Wiśniowską, a w oddziałach integracyjnym i specjalnych przez panią Karolinę Walaszczyk-Szkutnik. Z tym, że w okresie od 23 marca 2020 do końca maja 2020 innowacja realizowana była w wszystkich oddziałach przez panią Karolinę Walaszczyk-Szkutnik, z uwagi na nieobecność w pracy pani Alicji Wiśniowskiej. Opis podjętych działań W gimnazjum byłem lepszy od niego z matematyki , ale teraz on dostaje 4 i 5, a ja 3 albo 4. Zauważyłem też u siebie duże problemy z koncentracja . Nie wiem czy może to wynikać z tego że mało śpię. Bo kładę się spać około 23 a wstaje i się uczę o 4/5 rano. W klasie też jest tak zwany "szum" a w gimnazjum była dyscyplina i cisza. W latach 90-tych amerykańscy naukowcy odkryli, że mózg osoby cierpiącej ma dysleksję i dyskalkulię różni się od mózgu osoby zdrowej. Osoba z dyskalkulią, w odróżnieniu od osoby zdrowej, ma bardziej aktywną przednią część mózgu zamiast tylnej. Natomiast z dyskalkulią rozwojową mamy do czynienia wówczas, kiedy predyspozycje Z zadaniem, w którym uczniowie mieli uzupełnić pola składającej się z kilku działań tabeli mnożenia, poradziło sobie zaledwie 34 proc. uczniów. Eksperci po analizie wyników stwierdzili, że poważne problemy z wykonywaniem podstawowych działań miała jedna piąta uczniów. Poza jednostkami, nie mieli nawet dobrych wyników w nauce. Na 21 uczniów w klasie 8 było skonsultowanych w poradni psychologiczno-pedagogicznej. U 4 zdiagnozowano specyficzne trudności w uczeniu się w postaci dysleksji. U 2 zaburzenia zachowania o podłożu psychologicznym. Troje dzieci powtarzało rok w pierwszej, drugiej lub trzeciej określonych programem nauczania matematyki w klasie V. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć kolejnych zagadnień omawianych podczas lekcji i wykonywać prostych zadań z życia codziennego związanych z matematyką. . Czesc. Po pierwsze zapomnij o myslach samobojczych. Masz 16 lat i nic jeszcze w zyciu nie osiagnales, podobnie jak Twoi koledzy prymusi z matmy. Wszystko przed Tobą wiec nigdy nie mysl o takich rzeczach. Po drugie, Twoje problemy z matematyka nie są wieksze niz innych slabeuszy matematycznych tylko ty zrobiles z tego psychozę i sam siebie nakręcasz. Po trzecie, Twoje problemy wynikaja z tego, że nigdy nie uczyłes sie matematyki albo Ciebie żle uczono (prawdopodobnie to drugie). Masz zaleglosci od podstaw ktore się powiekszają bo nie majac podstaw nie zrozumiesz dalszych rzeczy. Po czwarte, Twoja niewiedza z matematyki nie ma nic wspolnego z przysadką tylko z tym co napisalem w punkcie 3. Po piate nie przejmuj sie, ze nie umiesz szybko dodawac w glowie. Jak bedziesz trenowal matematyke to zobaczysz ze Twoj mozg bedzie w koncu sam to liczyl i ze sie nawet mocno zdziwisz. Takie samoliczenie samo przyjdzie. Po szóste, matematyka nie jest trudna. To znaczy kiedy sie ma 16 lat to jest trudna ale wierz mi, nie jest, tylko tak wyglada ze jest. Po siódme boga nie ma. Jest tylko piekny Kosmos ktory mozna pieknie opisać matematyką. MOJE RADY 1. Zalatw sobie korepetytora z matmy. Najlepiej faceta (przepraszam za seksizm wszystkie kobiety które to czytają ale tu chodzi o relacje męsko-męskie typu nauczyciel-uczeń w najlepszej tradycji greckiej). 2. Niech korepetytor uczy Cie podstaw matematyki. Nie tylko tego, co przerabiacie na lekcjach lecz przede wszystkim podstaw. 3. Jezeli nauczysz sie jakiegos materialu np. zasad potegowania, to trenuj to sam. Trenuj matme nie tylko wtedy, kiedy masz korepetycje tylko sam, codziennie albo nie-codziennie byle regularnie, sam trenuj, sam sobie WYMYSLAJ PRZYKLADY i je rozwiazuj. Sam wymyslaj co raz bardziej skomplikowane przyklady i je rozwiazuj. Baw sie sam ze sobą. Baw sie matematyką. Wszystko pokaz korepetytorowi. Gwarantuje Ci, ze jak juz w koncu dobrze załapiesz jakiś temat, to tak sie podjadasz, ze nic nie bedzie w stanie przebic tej radosci. Ale musisz pracować. Nie ma ze boli. 4. Pracujac z korepetytorem NIGDY nie klam ze rozumiesz jesli nie rozumiesz. zadawaj glupie pytania, wtedy on bedzie wiedzial czego nie rozumiesz i czego Ci jeszcze brakuje. Przerabiaj temat do skutku az sie poplaczesz. Zadnej litosci. 5. Pamietaj. Nie rob z korepetycji celebry. Nie traktuj korepetycji jak jakiejs mszy swietej. Nie celebruj. Traktuj korepetycje jak trening kosza lub na silowni. Nie rob z tego czegos co sie pojawia i znika a Ty zapominasz i idziesz robic cos przyjemniejszego. To matma ma byc tym czyms przyjemnym co bedziesz robil. Tak ma byc. Wtedy sie nauczysz. 6. Zmien nastawienie. Nie mow sobie, ze Ty tego nie zrozumiesz. Program matmy w szkole jest taki ze kazdy zrozumie. Trzeba tylko miec odpowiednie podejscie. Nie wmawiaj sobie, ze nie masz umyslu scislego ze jestes humanista - nie ma czegos takiego. Jedni po prostu lubia matme a inni nie lubia a jak ktos nie lubi to na 99% nie bedzie jej rozumial bo sie nie bedzie mu chcialo siadac w domu i rozwiązywać zadania. A matme trzeba trenowac. Wtedy sama wchodzi do glowy. Pożytki z matematyki są ogromne. Dzieki matmie, dzieki treningowi matematyki, mózg tworzy ogromne ilosci nowych komorek i sie coraz bardziej zamienia w niewyobrażalną maszyne analityczną. Jesli liczba komorek sie powieksza to rosnie inteligencja czyli zdolnosc reagowania na swiat. Wtedy nowe działy matmy łatwiej wchodza do głowy bo mózg jest przygotowany zeby to wszystko przerobić. Im wiecej cwiczysz matmy im wiecej przyswajasz matmy tym mozg masz lepszy i tym szybciej uczysz sie nowych rzeczy. Oczywiscie taki super mozg swietnie sobie radzi ze wszystkimi innymi problemami (fizyka, biologia, literatura) PAMIĘTAJ, NAJLEPSZYM SPOSOBEM NA NAUCZENIE SIE MATEMATYKI JEST SAMODZIELNE TRENOWANIE W DOMU, WYMYSLANIE SOBIE CORAZ TRUDNIEJSZYCH PRZYKŁADÓW. Rozpoczęcie czwartej klasy to wielkie wydarzenie dla każdego ucznia i uczennicy. Oto rozpoczyna się wielka przygoda z nauką! Dzieci poznają nowe przedmioty i nauczycieli, często po raz pierwszy spotykają się z 6-stopniowym systemem oceniania, kartkówkami, klasówkami i odpytywaniem. Ciekawość i ekscytacja przeplatają się z niepewnością oraz wieloma obawami. Co zrobić, aby pozytywne emocje wygrały z negatywnymi? Jak zadbać o dobre nastawienie małych uczniów? Jak przygotować ich na spotkanie z nowymi wyzwaniami? Podpowiadamy! Pierwsze spotkanie z poważną matematyką Podczas lekcji nauczania początkowego uczniowie poznają cyfry oraz podstawowe działania matematyczne. W czwartej klasie poprzeczka znacznie się podnosi. Maluchy uczą się mnożenia, dzielenia, potęgowania, systemów zapisów liczb i działań pisemnych. Dla wielu z nich może być to stresujące – zwłaszcza, jeżeli nauka nie przebiega na luzie, a potknięcia dominują nad sukcesami. Jak tego uniknąć?Niezwykle ważne jest, aby pierwsze spotkanie z „poważną matmą” było dla uczniów przyjemne, pozbawione presji i nadmiernego stresu. Nauka powinna być przyjemnością! Zwłaszcza, że zaniedbania na tym etapie bywają fatalne w skutkach – matematyka może na wiele lat zyskać łatkę niezrozumiałej i więcej, problemy z przyswojeniem podstawowych pojęć z matematyki dla klasy 4, mogą ciągnąć się za uczniem przez całą edukację (a nawet dużo dłużej…). Przykładowo, jeżeli z jakiegoś powodu maluch nie zapamięta tabliczki mnożenia, do końca szkoły średniej może odczuwać braki w swojej wiedzy i mieć problemy z opanowaniem trudniejszego materiału, np. mnożenia ułamków. Matematyka klasa 4 – jak nie zniechęcić się na samym początku? Pojęcia matematyczne, które uczniowie poznają w szkole podstawowej, dostarczają wiedzy, która pomaga zrozumieć rzeczywistość. Dzieci otrzymują narzędzia, z których mogą korzystać w swojej codzienności. Tabliczka mnożenia okazuje się niezawodna na zakupach czy nawet podczas zabaw i gier. Warto to wykorzystać, aby zachęcić maluchy do nauki!Zrozumienie, w jaki sposób wiedza przekłada się na życie (i w jaki sposób może je ułatwić), jest dla uczniów bezcenne. To właśnie z tego powodu w każdym z działów Matmy na Luzie dla klasy 4 tłumaczymy „po co nam to?”. Życiowe przykłady, nawiązujące do zakupów, planowania wakacji czy organizowania pokoju, doskonale motywują do aspektem, na który trzeba zwrócić uwagę, by nie zniechęcić dzieci do uczenia się matmy, jest właściwy sposób przekazywania wiedzy. Sztywny język i zawiłe formułki warto ograniczyć do niezbędnego minimum. Informacje, które przekazywane są w przystępny sposób, językiem ucznia, są zdecydowanie łatwiej przyswajane. Przyjazny styl, nieskomplikowane zwroty i wiele, wiele przykładów – to kolejny składnik naszego przepisu na efektywną naukę matematyki w klasie 4. Jesteśmy przekonani, że luźny język odczarowuje „straszną” matmę, a budowanie skojarzeń sprzyja lepszemu zapamiętywaniu wzorów oraz ogólnych zasad matematycznych. Matma pod górkę – po co uczyć się trudniejszych zagadnień? W poprzednim akapicie podkreślaliśmy potrzebę zrozumienia podstawowych zagadnień matematycznych. Większość uczniów zgodzi się z faktem, że opanowanie tabliczki mnożenia czy ułamków dziesiętnych, jest koniecznością. Co jednak z trudniejszymi tematami? Jak wytłumaczyć dzieciom potrzebę zrozumienia wyrażeń algebraicznych czy umiejętności obliczenia objętości skomplikowanej figury przestrzennej? Dla wielu nauczycieli oraz rodziców w tym właśnie momencie rozpoczynają się matematyki, zarówno łatwiejszych, jak i bardziej zaawansowanych działów, pozwala rozwijać zdolność logicznego myślenia. Dlaczego to takie ważne? W codziennym życiu uczniowie napotykają na wiele trudnych sytuacji, które wymagają analizy dostępnych opcji, rozważenia potencjalnych scenariuszy, a następnie wybrania najlepszego z możliwych ten znajduje zastosowanie w codziennych sytuacjach, np.: Mam 50 zł i chcę kupić przekąski dla koleżanek i kolegów, którzy mnie osób muszę uwzględnić? Ile jedzenia powinienem zaplanować dla każdego ze znajomych? Czy mogę skorzystać z promocji, jakie dostępne są w sklepie? Chcę spakować walizkę na wakacje. Muszę zabrać odpowiednią ilość ubrań i znaleźć miejsce na swoje ulubione par butów powinienem spakować? Z czego mogę zrezygnować, aby znaleźć miejsce na konsolę? Co może się stać, jeżeli zrezygnuję ze spakowania kurtki przeciwdeszczowej? Z matematyką można się zaprzyjaźnić Logiczne myślenie okazuje się bezcenne również w dorosłym życiu. Umiejętności, jakie uczeń wyniesie z lekcji matematyki, zaprocentują w sytuacjach zawodowych, podczas planowania wydatków, remontu mieszkania czy prowadzenia zrozumieć, że schemat, z którego korzystamy w takich sytuacjach, jest dokładnie tym, co przez wiele lat ćwiczymy na matmie. Rozpoznajemy problem, analizujemy dostępne dane, szukamy rozwiązania i wskazujemy właściwą odpowiedź. To właśnie z tego powodu każdy uczeń – nawet osoby, które kształcą się na kierunkach humanistycznych – powinien zaprzyjaźnić się z widzisz, znaczenia pierwszego spotkania z matematyką w klasie 4, nie sposób przecenić. Opanowanie podstawowych zagadnień umożliwia dobry start – nie tylko w dalszą naukę matematyki, ale także w samodzielne życie. Poza tym, kto wie? Być może uczeń, który napotyka na przeszkody w klasie 4, w przyszłości zechce być inżynierem? Warto zapewnić mu solidny fundament, na którym będzie mógł budować swoją przyszłość. Zobacz także: W tym dziale znajdziesz dziesiątki quizów, ćwiczeń i zadań z matematyki obejmujących swym zakresem cały program nauczania klasy 4. Jeśli więc jesteś uczniem tej klasy i masz trudności z jąkać partią materiału idealnie trafiłeś. Możesz tu wszystko przećwiczyć bez opłat i rejestracji. Wystarczy wybrać interesujące Cię ćwiczenie i możesz zabierać się do pracy. Po udzieleniu odpowiedzi zobaczysz komunikat czy dane zadanie zostało wypełnione poprawnie czy nie, a po rozwiązaniu całego testu zobaczysz podsumowanie ze wszystkimi zaznaczonymi przez ciebie odpowiedziami i wskazaniem, które odpowiedzi są poprawne. Możesz to podsumowanie pobrać jako PDF, lub wrócić do niego po kliknięciu w link. Zadania z matematyki dla klasy 4 obejmują między innymi mnożenie i dzielenie. Podzieliliśmy tu zadania na mnożenie w zakresie do 200, 500 a nawet do 100. Dlatego zależnie od omawianego materiału możesz na bieżąco wszystko przećwiczyć w domowym zaciszu. Podobny podział ćwiczeń zrobiliśmy dla dzielenia – i w tym przypadku możesz ćwiczyć stopniowo, bez rzucania się od razu na głęboką wodę. Kolejnym działem z zadaniami, który dla was przygotowaliśmy to figury geometryczne, gdzie możecie przećwiczyć obliczanie pól i obwodów podstawowych figur. Następnie, w dziale działania na liczbach znajdziecie quizy na kolejność wykonywania działań matematycznych z nawiasami i bez, przy dodawaniu i odejmowaniu. Następny dział to system zapisywania liczb gdzie przećwiczyć można zapisywanie liczb rzymskich jako arabskie, lub liczb arabskich jako rzymskie. Do tego dodaliśmy quizy z przeliczania miar długości – centymetrów na milimetry i odwrotnie. W ostatnim dziale przećwiczyć możecie podzielność liczb na zadaniach takich jak wskazywanie liczb parzystych i nieparzystych, odnajdywanie liczb podzielnych przez wskazaną cyfrę, itp. Są tu zadania z otwartą odpowiedzią i testy wielokrotnego wyboru, ćwiczenia na analizę obrazka i na liczenie w pamięci. Znajdziesz tu wszystko czego potrzebujesz aby przećwiczyć materiał z matematyki obowiązkowy dla uczniów klasy 4. Praca z dziećmi mającymi trudności w matematyce DLA UCZNIÓW KLASY CZWARTEJ , PIĄTEJ I SZÓSTEJ, realizujących program nauczania matematyki w oparciu o podręczniki „Matematyka z plusem” wyd. GWO I . Ogólne założenia programu:Program realizowany jest w ramach zajęć wyrównawczych w klasach IV, V, i VI. Powstał w celu wyrównania szans edukacyjnych dzieci z brakami w wiadomościach i umiejętnościach szkolnych z zakresu edukacji matematycznej. Program w pełni uwzględnia edukację matematyczną, zawartą w Podstawie Programowej określonej przez MENiS. W klasach w których uczę jest spora grupa uczniów bardzo słabych, którzy nie radzą sobie w toku zajęć edukacyjnych. W klasie czwartej, piątej i szóstej prowadziłam zajęcia wyrównawcze, które dały wymierne efekty, uczniowie przestali bać się matematyki, potrafią określić zagadnienie, którego nie rozumieją. Program ten jest wyjściem naprzeciw oczekiwaniom uczniów, ich rodziców i moim własnym. Program przygotowany został do realizacji w wymiarze 1 godziny tygodniowo. Dobór treści pozwala na częste odwoływanie się do życia codziennego, co ułatwia uczniowi pojmowanie niektórych zagadnień. II. Cele główny: - wyrównywanie braków edukacyjnych w zakresie realizowanych treści programowych, będących przyczyną trudności szkolnych, - zachęcenie ich do zwiększenia wysiłku w uczeniu się matematyki, kształtowanie pozytywnego nastawienia do podejmowania wysiłku intelektualnego,- wyrabianie własnej wartości,- zniwelowanie przykrych doświadczeń wiązanych z porażkami ucznia na lekcjach matematyki,- uświadomienie potrzeby znajomości pojęć matematycznych w codziennych sytuacjach życiowych,- rozwijanie umiejętności pracy w grupie . Cele szczegółowe:- nauczanie przedstawiania rozwiązań w sposób czytelny, - wyrabianie nawyków sprawdzania otrzymanych odpowiedzi i poprawiania błędów, - rozwijanie umiejętności matematycznych,- kształtowanie pojęć matematycznych,- rozbudzanie zainteresowań, wyrabianie własnej motywacji do (pracy) nauki,- ułatwienie dziecku umiejętności liczenia poprzez ćwiczenia koncentracji uwagi, rozwijanie spostrzegawczości, - kształtowanie umiejętności porównywania, segregowania i samokontroli,- rozwijanie umiejętności posługiwania się metodami matematycznymi w życiu codziennym,- wyrabianie poczucia własnej wartości,- motywowanie do przezwyciężania trudności w powinien: • operować podstawowymi pojęciami arytmetyki i geometrii, • posługiwać się symbolami matematycznymi do zapisywania treści zadań, • przeprowadzać proste rozumowania matematyczne, • postrzegać różnego rodzaju przedmioty jako figury przestrzenne, • rozwijać wyobraźnię przestrzenną, • umieć uzasadnić poprawność własnych spostrzeżeń i myśli, • zdobyć umiejętność dostrzegania związków między matematyką a otaczającym światem, • stosować matematykę do opisu prostych zjawisk przyrodniczych, • zdobyć umiejętności potrzebne w życiu codziennym, takie jak: o posługiwanie się dostępnymi urządzeniami usprawniającymi obliczenia, o sporządzanie rysunków pomocniczych ułatwiających rozwiązywanie problemów praktycznych, o korzystanie z podstawowych jednostek miary (długości, wagi, czasu i pola) o odczytywanie informacji z tabel, diagramów i wykresów, o planowanie wydatków i gospodarowanie pieniędzmi.• posiadać nawyk porządnej, starannej i systematycznej pracy, • być przygotowanym do dalszego kształcenia, do zdobywania i pogłębiania wiedzy oraz szukania informacji. III. Procedury osiągania procesie pomocy dzieciom z trudnościami w nauce bardzo ważną rolę odgrywają aktywność i chęć dziecka do pracy. Ważne jest aby dobrać odpowiednie techniki, metody i zasady pracy:1. Zasady pracy:- Indywidualizacja, czyli dobór środków i metod w zależności od potrzeb i możliwości uczniów (dla każdego inne)- Zasada stopniowania trudności (przechodzenie od prostych zajęć do złożonych).- Zasada systematyczności : indywidualizacja i modyfikacja wymagań dostosowanych do możliwości Metody:- rozwiązywanie zadań, - ćwiczenia,- gry i zabawy,3. Formy pracy:praca indywidualna, grupowa, Środki dydaktyczne:- podręczniki i zeszyty zadań dla klasy IV, V, VI „Matematyki z plusem”,- przyrządy geometryczne,- karty pracy,- figury geometryczne,- geoplany,- zegary,- termometry,- Przewidywane osiągnięcia wyniku realizacji programu uczeń klasy IV:- wyrówna braki edukacyjne w zakresie treści programowych,- ma wyrobione poczucie własnej wartości,- chętnie podejmuje się wysiłku intelektualnego,- umiejętnie stosuje wiedzę matematyczną w różnych sytuacjach życiowych,- zna cyfrowy i słowny zapis liczby wielocyfrowej,- sprawnie wykonuje cztery podstawowe działania matematyczne pisemnie i w pamięci,- rozwiązuje proste zadania tekstowe,- wśród figur geometrycznych potrafi wskazać prostokąt i kwadrat,,- wykonuje obliczenia pieniężne,- potrafi wykonać proste obliczenia zegarowe i kalendarzowe,- potrafi obliczyć pole prostokąta i kwadratu,- zna pojęcie skali,- potrafi wykonać dodawanie i odejmowanie ułamków zwykłych o jednakowych mianownikach oraz ułamków dziesiętnych,- potrafi pomnożyć ułamek zwykły przez liczbę naturalną,- potrafi pomnożyć i podzielić ułamki dziesiętne:W wyniku realizacji programu uczeń klasy V: - wyrówna braki edukacyjne w zakresie treści programowych,- ma wyrobione poczucie własnej wartości,- chętnie podejmuje się wysiłku intelektualnego,- umiejętnie stosuje wiedzę matematyczną w różnych sytuacjach życiowych,- sprawnie wykonuje cztery podstawowe działania matematyczne pisemnie i w pamięci,- rozwiązuje proste zadania tekstowe,- rozróżnia figury geometryczne,- wykonuje obliczenia pieniężne,- potrafi wykonać obliczenia zegarowe i kalendarzowe,- potrafi obliczyć pole figury płaskiej,- zna i stosuje pojęcie skali,- potrafi wykonać cztery działania na ułamkach zwykłych oraz dziesiętnych,- odczytuje wskazania termometru,- wykonuje cztery działania na liczbach całkowitych,- potrafi obliczyć procent z liczby,- umie wykorzystać obliczenia procentowe do rozwiązywania prostych zagadnień praktycznych np. oblicza podwyżkę,- potrafi kreślić siatki graniastosłupów prostych,- potrafi wymienić własności kątów w wielokątach,- potrafi odczytać informacje zawarte na diagramie procentowym, sporządza diagram. W wyniku realizacji programu uczeń klasy VI: - wyrówna braki edukacyjne w zakresie treści programowych,- ma wyrobione poczucie własnej wartości,- chętnie podejmuje się wysiłku intelektualnego,- umiejętnie stosuje wiedzę matematyczną w różnych sytuacjach życiowych,- sprawnie wykonuje cztery podstawowe działania matematyczne pisemnie i w pamięci,- rozwiązuje proste zadania tekstowe,- rozróżnia figury geometryczne,- wykonuje obliczenia pieniężne,- potrafi wykonać obliczenia zegarowe i kalendarzowe,- potrafi obliczyć pole figury płaskiej,- zna i stosuje pojęcie skali,- potrafi wykonać cztery działania na ułamkach zwykłych oraz dziesiętnych,- odczytuje wskazania termometru,- wykonuje cztery działania na liczbach całkowitych,- potrafi obliczyć procent z liczby,- umie wykorzystać obliczenia procentowe do rozwiązywania prostych zagadnień praktycznych np. oblicza podwyżkę,- potrafi kreślić siatki graniastosłupów prostych,- potrafi wymienić własności kątów w wielokątach,- potrafi odczytać informacje zawarte na diagramie procentowym, sporządza diagram,- potrafi rozwiązać proste równanie i nierówność,- potrafi zapisać i obliczyć wartości prostych wyrażeń algebraicznych,- potrafi stosować zdobytą wiedzę do rozwiązywania problemów z życia codziennego. V. Ewaluacja ewaluacji jest ustalenie stopnia opanowania osiągnięć ucznia. Przeprowadzona zostanie na początku roku szkolnego, po I semestrze oraz na zakończenie roku szkolnego. W procesie ewaluacji mogą zostać wykorzystane następujące narzędzia:- testy „na wejściu”, - sprawdziany zaczerpnięte z programu „ Lepsza szkoła”, - obserwacja pedagogiczna,- testy „na wyjściu”,- wyniki sprawdzianu po klasie VI,- rozmowy z dziećmi i RAMOWY ROZKŁAD MATERIAŁU 1 godzina tygodniowo. 36 godzin rocznie. KLASA 4 ARYTMETYKA: 1. Liczby naturalne 2. Ułamki zwykłe i dziesiętne 3. System zapisywania liczbGEOMETRIA 1. Figury na płaszczyźnie 2. Graniastosłupy KLASA 5 ARYTMETYKA: 1. Liczby naturalne 2. Ułamki zwykłe i dziesiętne 3. Procenty 4. Liczby całkowiteGEOMETRIA 1. Figury na płaszczyźnie 2. Graniastosłupy KLASA 6 ARYTMETYKA: 1. Liczby naturalne 2. Ułamki zwykłe i dziesiętne 3. Procenty 4. Liczby wymierneGEOMETRIA 1. Figury na płaszczyźnie 2. Graniastosłupy3. Konstrukcje geometryczne ALGEBRA 1. Proste wyrażenia algebraiczne2. Równania i nierównościVII. Treści programu:Klasa IVARYTMETYKA Liczby naturalne. Ułamki zwykłe i dziesiętne Działania na liczbach naturalne. • Dodawanie, odejmowanie, mnożenie i dzielenie liczb naturalnych (działania pamięciowe). • Obliczanie wartości wyrażeń arytmetycznych z uwzględnieniem kolejności działań. • Działania pisemne • Cechy podzielności liczb naturalnych• Rozwiązywanie prostych zadań z treścią Ułamki zwykłe. Działania na ułamkach zwykłych. • Skracanie, rozszerzanie i zamiana ułamków niewłaściwych na liczby mieszane i odwrotnie • Zaznaczanie ułamków na osi liczbowej • Porównywanie ułamków • Dodawanie, odejmowanie ułamków zwykłych o jednakowych mianownikach• mnożenie ułamków zwykłych przez liczby naturalne• Rozwiązywanie prostych zadań tekstowych. Ułamki dziesiętne. Działania na ułamkach dziesiętnych • Zamiana ułamków zwykłych na dziesiętne i odwrotnie • Porównywanie ułamków dziesiętnych • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków dziesiętnych • Rozwiązywanie prostych zadań tekstowych System zapisywania liczb• System dziesiątkowy• Znaki rzymskie• Jednostki długości i masy• Porównywanie liczb naturalnych wielocyfrowychGEOMETRIA Figury na płaszczyźnie Własności figur płaskich. • Rodzaje i mierzenie kątów• Rysowanie prostokątów i kwadratów• Położenie prostych i odcinków Pola i obwody trójkątów i czworokątów • Obliczanie pól i obwodów prostokątów i kwadratów • Rozwiązywanie prostych zadań z treścią Prostopadłościany Własności prostopadłościanów• Rozpoznawanie krawędzi, wierzchołków, ścian, podstaw prostopadłościanów • Rozpoznawanie i kreślenie siatek prostopadłościanów Pole powierzchni prostopadłościanu • Jednostki pola • Obliczanie pól powierzchni (proste przykłady)Klasa VARYTMETYKA Liczby naturalne. Ułamki zwykłe i dziesiętne Działania na liczbach naturalne. • Dodawanie, odejmowanie, mnożenie i dzielenie liczb naturalnych (działania pamięciowe). • Obliczanie wartości wyrażeń arytmetycznych z uwzględnieniem kolejności działań. • Działania pisemne • Rozwiązywanie prostych zadań z treścią Ułamki zwykłe. Działania na ułamkach zwykłych. • Skracanie, rozszerzanie i zamiana ułamków niewłaściwych na liczby mieszane i odwrotnie • Zaznaczanie ułamków na osi liczbowej • Porównywanie ułamków • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków zwykłych • Rozwiązywanie prostych zadań tekstowych. Ułamki dziesiętne. Działania na ułamkach dziesiętnych • Zamiana ułamków zwykłych na dziesiętne i odwrotnie • Porównywanie ułamków dziesiętnych • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków dziesiętnych • Działania łączne na ułamkach zwykłych i dziesiętnych • Rozwiązywanie prostych zadań tekstowych Procenty Obliczenia procentowe • Zapisywanie ułamków w postaci procentów. • Zapisywanie procentów w postaci ułamków. • Odczytywanie i rysowanie diagramów procentowych. • Obliczanie procentu danej liczby. • Rozwiązywanie prostych zadań tekstowych. Liczby całkowite• Rozpoznawanie liczby dodatniej i ujemnej• Dodawanie i odejmowanie liczb całkowitychGEOMETRIA Figury na płaszczyźnie Własności figur płaskich. • Rodzaje kątów • Rodzaje trójkątów. • Własności kątów w trójkątach. • Rodzaje czworokątów. • Własności kątów w czworokątach. • Własności przekątnych w i obwody trójkątów i czworokątów • Obliczanie pól i obwodów trójkątów i czworokątów. • Rozwiązywanie prostych zadań z treścią Graniastosłupy Własności graniastosłupów • Rozpoznawanie krawędzi, wierzchołków, ścian, podstaw graniastosłupów prostych • Rozpoznawanie i kreślenie siatek graniastosłupów prostych Pole powierzchni i objętość graniastosłupów • Jednostki pola i objętości • Obliczanie pól powierzchni graniastosłupów (proste przykłady) • Obliczanie objętości graniastosłupów (proste przykłady) Klasa VIARYTMETYKA Liczby naturalne. Ułamki zwykłe i dziesiętne Działania na liczbach naturalne. • Dodawanie, odejmowanie, mnożenie i dzielenie liczb naturalnych (działania pamięciowe). • Obliczanie wartości wyrażeń arytmetycznych z uwzględnieniem kolejności działań. • Działania pisemne • Rozwiązywanie prostych zadań z treścią Ułamki zwykłe. Działania na ułamkach zwykłych. • Skracanie, rozszerzanie i zamiana ułamków niewłaściwych na liczby mieszane i odwrotnie • Zaznaczanie ułamków na osi liczbowej • Porównywanie ułamków • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków zwykłych • Rozwiązywanie prostych zadań tekstowych. Ułamki dziesiętne. Działania na ułamkach dziesiętnych • Zamiana ułamków zwykłych na dziesiętne i odwrotnie • Porównywanie ułamków dziesiętnych • Dodawanie, odejmowanie, mnożenie i dzielenie ułamków dziesiętnych • Działania łączne na ułamkach zwykłych i dziesiętnych • Rozwiązywanie prostych zadań tekstowych Procenty Obliczenia procentowe • Zapisywanie ułamków w postaci procentów. • Zapisywanie procentów w postaci ułamków. • Odczytywanie i rysowanie diagramów procentowych. • Obliczanie procentu danej liczby. • Rozwiązywanie prostych zadań tekstowych. Liczby całkowite• Rozpoznawanie liczby dodatniej i ujemnej• Dodawanie i odejmowanie liczb całkowitychGEOMETRIA Ewaluacja ma służyć uczniom, dyrekcji szkoły i nauczycielomrealizującym program. Wszystkie strony będą informowane o jej wynikachi będą uczestniczyły w wyciąganiu, formułowaniu wniosków i realizowaniuzaleceń na na płaszczyźnie Własności figur płaskich. • Rodzaje kątów • Rodzaje trójkątów. • Własności kątów w trójkątach. • Rodzaje czworokątów. • Własności kątów w czworokątach. • Własności przekątnych w i obwody trójkątów i czworokątów • Obliczanie pól i obwodów trójkątów i czworokątów. • Rozwiązywanie prostych zadań z treścią Graniastosłupy Własności graniastosłupów • Rozpoznawanie krawędzi, wierzchołków, ścian, podstaw graniastosłupów prostych • Rozpoznawanie i kreślenie siatek graniastosłupów prostych Pole powierzchni i objętość graniastosłupów • Jednostki pola i objętości • Obliczanie pól powierzchni graniastosłupów (proste przykłady) • Obliczanie objętości graniastosłupów (proste przykłady) Konstrukcje geometryczne• Przenoszenie odcinków i kątów• Proste prostopadłe i równoległe• Symetralna odcinka, dwusieczna kata• Konstrukcja trójkątaWyrażenia algebraiczne • Zapisywanie i odczytywanie prostych wyrażeń algebraicznych • Obliczanie wartości liczbowych prostych wyrażeń algebraicznych • Redukcja wyrazów podobnych• Mnożenie i dzielenie sum algebraicznych przez liczbyRównania i nierówności• Zapisywanie równań i nierówności. Liczba spełniająca równanie lub nierówność• Rozwiązywanie równań i nierówności• Proste zadania tekstowe Dziecko podejmujące naukę w szkole napotyka niekiedy na trudności w uczeniu się matematyki. Głównym sposobem uczenia się matematyki jest rozwiązywanie zadań, które jest jednoznaczne z pokonaniem trudności. Większość dzieci potrafi je pokonać, ale w każdej grupie jest kilkoro dzieci, które mimo wysiłku, nie potrafią poradzić sobie nawet z prostym zadaniem z tego powodu, że nie dostrzegają zależności pomiędzy liczbami, mają niską odporność emocjonalną , czy też obniżoną sprawność manualną. W takich przypadkach mówimy, że te dzieci mają specyficzne trudności w uczeniu się matematyki. Wymagają natychmiastowej pomocy ze strony dorosłych. Jeśli jej nie otrzymają, to zaczynają się niepowodzenia i blokady w uczeniu się matematyki oraz niechęć do wszystkiego co ma związek z matematyką. W tej pracy chcę przedstawić przypadek dziewczynki mającej specyficzne trudności w nauce matematyki spowodowane niekorzy-stnymi warunkami domowymi oraz mikrozaburzeniami rozwojowymi w sferze poznawczej i społeczno – środowiska domowego uczennicy. Ania jest uczennicą klasy drugiej tutejszej szkoły od września tego roku. Wcześniej dziewczynka mieszkała w Sosnowcu i tam uczęszczała do klasy pierwszej. Podczas rozmowy z ojcem dziecka dowiedziałam się, że rodzice dziewczynki rozwiedli się i ojciec otrzymał prawo opieki nad dwoma córkami. Przeprowadzili się do babci i wspólnie zamieszkują. Gdy Ania była w klasie pierwszej w rodzinie panowała napięta atmosfera, dochodziło do częstych nieporozumień i awantur między rodzicami. Dziewczynka często opuszczała zajęcia w szkole. Zaległości powstałe w wyniku nieobecności nie były na bieżąco nadrabiane. Dziewczynka bardzo przeżyła fakt, że (według relacji ojca) mama jej nie chciała. Obecnie Ania wraz z młodszą siostrą, ojcem, babcią i bratem ojca mieszkają w dwupokojowym mieszkaniu bez łazienki. Ojciec pracuje, ale jego zarobki są bardzo niskie, dlatego rodzina korzysta z pomocy OPS-u. Mimo trudnej sytuacji materialnej, dziewczynka, posiada potrzebne przybory i podręczniki w nauce matematyki. Od pierwszego dnia w szkole bacznie obserwowałam Anię. Chciałam poznać jej umiejętności jakie osiągnęła w klasie pierwszej, ale w taki sposób aby nie czuła, że jest pod stałą obserwacją. Pomogły mi w tym dziewczynki, które przyjęły Anię bardzo serdecznie, zapraszając ją do wspólnych zabaw. Dzięki temu dziecko nie czuło się osamotnione i wyobcowane. Dziewczynka chętnie brała udział w zajęciach z kształcenia polonistycznego, w miarę płynnie czytała, potrafiła przepisywać z druku oraz pisać z pamięci. Litery kreśliła starannie, prawidłowo je łącząc. Mimo nieźle opanowanej techniki czytania, Ania miała trudności ze zrozumieniem i zapamiętaniem treści samodzielnie przeczytanego tekstu oraz z werbalizowaniem swoich myśli, budowaniem wypowiedzi słownych – wymagała pytań pomocniczych, ukierunkowujących jej tok myślenia. Na zajęciach z kształcenia matematycznego Ania praktycznie nie odzywała się, nie wyżarła ochoty liczenia przy tablicy. Cichutko przepisywała lub uzupełnia zadania w ćwiczeniach, często zerkając do koleżanki. Zauważyłam, że Ania liczy na palcach i w ten sposób rozwiązuje zadania wymagające obliczeń w zakresie 10 i 20. Pierwsza praca samodzielna dziewczynki była porażką. Prawidłowo wykonała tylko obliczenia w zakresie 10. Obliczenia w zakresie 20 zarówno na odejmowanie jak i na dodawanie były błędne. Nie potrafiła rozpisywać liczb w dziesiątkowym systemie pozycyjnym. Rozwiązując proste zadania z treścią potrafiła wykonać rysunek i zapisać odpowiednią formułę matematyczną, nie zapisywała jednak odpowiedzi w formie prace Ani zauważyłam, że dziewczynka obliczając, myli się o 1, tzn. wynik dodawania jest zawsze o 1 mniejszy niż poprawny , a odejmowania o 1 większy np. 6+7=12, a 13-5=9. Okazało się, że dziecko oblicza przez doliczanie lub odliczanie na palcach, powtarzając liczbę do której dolicza lub liczbę od której odlicza i stąd błędy w udzielonej pomocy Po stwierdzeniu trudności w nauce poprosiłam ojca dziewczynki na rozmowę. Przedstawiłam mu moje spostrzeżenia dotyczące stopnia opanowania umiejętności Ani w zakresie kształcenia polonistycznego i matematycznego. Zaproponowałam, aby dziecko zostało przebadane w poradni psychologiczno – pedagogicznej w celu określenia przyczyn trudności, czy wynikają one tylko z niekorzystnych przeżyć dziecka, czy też mają jeszcze inne podłoże. W oparciu o wyniki badań i zalecenia będzie można objąć dziecko zajęciami kompensacyjno - korekcyjnymi lub wyrównawczymi. Do tego czasu przeprowadzałam zajęcia dodatkowe dla Ani, dwa razy w tygodniu po 20 minut. Celem tych spotkań było przede wszystkim zlikwidowanie błędnego sposobu obliczania sum i różnic i udoskonalenie techniki rachunkowej w zakresie 20 oraz poznanie konwencji logicznej szkolnych zadań z treścią Wykorzystałam podczas zajęć liczby w kolorach, dwukolorowe liczydełko do liczenia w zakresie 20 , kostki do gry odpowiednio zmodyfikowane i liczmany. Zajęcia rozpoczęłam od zabaw z liczbami w obrębie dziesiątki. Dziewczynka manipulowała przedmiotami, dodając, odejmując i dopełniając do 10, potem były analogiczne zabawy w obrębie drugiej dziesiątki i z przekroczeniem progu dziesiątkowego. Podczas ferii zimowych otrzymałam opinię z poradni psychologiczno – pedagogicznej ( badanie przeprowadzono w grudniu), w której stwierdzono, iż ogólne możliwości intelektualne dziecka są niższe niż przeciętne, a rozwój przebiega nieharmonijnie. W wysiłku intelektualnym Ania jest mało samodzielna – potrzebuje pomocy ze strony osoby dorosłej – ukierunkowania aktywności, naprowadzania na prawidłowy tok myślenia. W oparciu o przeprowadzone badania wnioskowano o objęcie dziewczynki zajęciami korekcyjno – kompensacyjnymi, na których należy stymulować ogólny rozwój poznawczy dziecka poprzez wzbogacanie zakresu wiadomości, wzbogacanie słownictwa, ćwiczenia spostrzegawczości, umiejętności logicznego myślenia, dokonywania analizy i syntezy myślowej. Techniki rachunkowe należy usprawniać w oparciu o różne gry dydaktyczne i rozrywki umysłowe. Podczas pracy sprawdzać zrozumienie treści zadań i Zajęcia indywidualne z Anią prowadziłam od listopada do ferii zimowych. W tym czasie dziewczynka nabyła umiejętność dodawania i odejmowania w pamięci w obrębie pierwszej i drugiej dziesiątki w pamięci – chociaż gdy wykonuje obliczenia spogląda na palce nie manipulując nimi. Potrafi również dodawać i odejmować z przekroczeniem progu dziesiątkowego wykorzystując rozpisywanie liczb w dziesiątkowym systemie pozycyjnym. Potrafi również rozwiązać proste zadania z treścią na dodawanie i odejmowanie, nie zawsze jednak potrafi samodzielnie ułożyć i zapisać odpowiedź na pytanie. Nadal ma problemy z rozwiązywaniem trudniejszych zadań z treścią oraz zadań związanych z kolejnością wykonywanych działań. Dużym sukcesem Ani jest opanowanie pamięciowe mnożenia i dzielenia w zakresie 30. Było to możliwe dzięki współpracy z ojcem, który ćwiczył z Anią w Ania uczęszcza na zajęcia korekcyjno – kompensacyjne razem z dwójką innych dzieci mających trudności w nauce matematyki. Dziewczynka zrobiła duże postępy w opanowaniu umiejętności matematycznych jednak wymaga, dalszej i systematycznej pracy i opieki ze strony nauczyciela i rodzica. Pozostawiona sama sobie nie będzie w stanie opanował umiejętności niezbędnych do dalszej nauki w szkole..

problemy z matematyką w klasie 4